JC-4C70D-H

USING INSTRUCTION

XT0223S18031

Inverter debugging steps

1 Initialization

Note: This step has been completed at the factory and does not need to be done again at the construction site. If replacing the motor or inverter, it needs to be reinitialized.

Inverter dial switch SW2 is turned to ON, SW3 is turned to OFF, and SW4 is turned to OFF. Then, press and hold the run button button button for about 3 seconds. After the door is closed in place and the door is opened in place indicator light flashes three times, the initialization is completed.

2 Positioning

Note: This step has been completed at the factory and does not need to be done again at the construction site. If replacing the motor or inverter, it needs to be repositioned.

Pull the car door to the middle position (without hall door), set SW2 to ON, SW3 to OFF, and SW4 to OFF. Then press the learn button, and you can see that the door has moved slightly. After about 5 seconds, the positioning is completed.

If the door panel does not move during positioning, pull the door open a bit and reposition it again until the door can move slightly, indicating successful positioning.

3 Self-learning

Place the door in the middle position, turn SW2 and SW3 to ON, SW4 to OFF, and then press the learn button. At this point, self-learning begins. The direction of movement is: close the door - close in place - open the door - open in place - close the door - close in place - lose torque retention, and self-learning is completed.

If the door moves in the direction of opening the door, set the status of SW1 to the opposite position.

During self-learning, there is no signal output for the door machine to open and close in place.

4 Demonstration Run

1

Turn SW2 and SW3 to ON, SW4 to OFF, and then press the run button. At this point, the door will move towards the closing direction until it is fully closed. Press the run button again, and the door operator will repeatedly open and close the door to demonstrate operation.

During the demonstration run, when the door operator opens and closes the door in place, there are signal outputs indicating whether the door operator is functioning properly. If the signal output is not in place, follow fault diagnosis method 3 to find the cause.

5 Normal mode setting

Turn SW2, SW3, and SW4 to OFF, and the door operator will close in place with torque. At this point, debugging is completed, and the door operator waits for the control system to issue a door opening and closing command. If there is no torque maintained after the door operator is closed in place, the cause of the problem should be determined based on the actual phenomenon, as shown in the attached table for fault diagnosis methods.

Fault diagnosis method

1 No power display on the door operator

A: Is the power switch turned on.

B: Measure whether the voltage between L and N at plugin P5 is AC220V

C: Check the wiring between the back of the inverter, fuses, and switches for detachment and looseness

If there are no issues with the above, the inverter is damaged.

2 Judgment of motor damage

Power off the inverter, unplug the three-phase wire plug of the motor, and use a multimeter to measure the resistance between the three phases and the resistance between each phase to ground.

A: Phase to phase resistance error of motors U, V, W $\leq 2\%$

B: The resistance to ground should be infinite

3 Demonstrating that the door operator did not output the signal in place during runtime

A: When the door is opened or closed, observe whether the corresponding position light on the inverter converter is on. If it is on, proceed to step B; if it is not on, proceed to step C

B: Unplug the P1 plugin and let the door operator demonstrate operation. Check whether the connection and disconnection between P1-1 and P1-2 or P1-1 and P1-3 are normal. If they are normal, it indicates that the door operator inverter is normal, and there is a problem with the signal of the control system (control cabinet wiring or parameter settings). If they are not normal, it indicates that the door operator inverter is damaged.

C: It may be that the width of the self-learning door is too large, causing the door to open properly and the back door width to not be fully opened. Check the value of DR half range or F0-3 (door width) in 3311. If it is a center open door operator, the value is about 1/2+50mm of the actual door width. If it is a side open door operator, the value is+50mm of the actual door width. If the self-learning door width differs significantly from the calculated value above, it can be manually changed.

4 No holding torque for door operator in control system mode

Control system mode (change the value of run comd source or F0-2 in menu M3311 to 4), which has been set before leaving the factory.

5 When controlling the system mode, the door cam cannot fully open, the door cam shakes, or the door lock signal light jumps when the door is closed in place.

Rotate the "Hold Torque" knob on the controller panel towards the arrow direction to its maximum.

6 When closing the door, the speed is very slow or there is a slight impact on the door.

A: Use the server to change the door cam parameters: M3315's door coupler or F4-18 selects parameters for the door cam, which is different from the low-speed closing operation

curve of asynchronous door cam. Choose according to the actual door cam type.

B: Use a dial switch and button to change the door cam parameters: ① Integrated car door lock synchronization door cam parameter change: Set SW2 and SW3 to ON, SW4 to OFF, press the Learn button for 3 seconds, the door open in place and door close in place display lights flash 3 times, and the integrated car door lock synchronization door cam parameter setting is completed; ② Normal synchronization door cam parameter change: Set SW2 to ON, SW3 to OFF, SW4 to ON, press the run button for 3 seconds, and the display lights for door opening and closing in place will flash 3 times. The normal synchronization door cam parameter setting is completed; ③ Asynchronous door cam parameter change: Set SW2 to ON, SW3 to OFF, and SW4 to ON. Press the Learn button for 3 seconds, and the display lights for door opening and closing in place will flash 3 times. The normal synchronization door cam parameter setting is completed; ③ Asynchronous door cam parameter change: Set SW2 to ON, SW3 to OFF, and SW4 to ON. Press the Learn button for 3 seconds, and the display lights for door opening and closing in place will flash 3 times. The asynchronous door cam parameter setting is complete.

C: If the door cam selection does not solve the problem, it is likely that the curve parameters have been changed. You can try initializing the parameters to debug again. The steps are as follows: set SW2 to ON, SW3, and SW4 to OFF, and then press the run button for 3 seconds. The display lights for opening and closing the door in place will flash 3 times, and the initialization is complete. After initialization, self-learning door width needs to be performed again.

7 There is shaking phenomenon during the operation of the door operator

A: Unplug the motor plug and use fault diagnosis method 2 to determine if the motor is damaged.

B: The first four parameters in menu M3312 (or F1), namely the PI value, are changed to 1000, 800, 1000, and 800, respectively.

4

Dialing Definition Description

Jarless-Con Dial Switch					
Motor forward and reverse rotation	Debug Mode	door width learning	Fault point memory	function	
SW1	SW2	SW3	SW4	Run Button	Learning button
*	ON	ON	OFF	Demonstration Run	self-learning
*	ON	OFF	OFF	Long press 3S parameter initialization	positioning
*	ON	OFF	ON		
*	ON	ON	ON	Long press 3S to initialize to door cam type 2 (Otis synchronous door cam)	Long press 3S to initialize to door cam type 3

				1s Long press	1s Long press
*	OFF	ON	OFF	for 3s (RY=7),	for 3s (RY=8),
				delaying 1s	delaying 0.5s
				Long press for	Long press for
*	OFF	ON	ON	3s (RY=9)	3s (RY=1),
				Direct output	closing delay
*	OFF	OFF	ON	Control cabinet	mode
*	OFF	OFF	OFF	Control cabinet mode	

Table 1

Explanation of Fault Light Definition.

Table 2

Fault	3	2	1
Base fault	light off	light off	light on
Over current	light off	light on	light off
Current fdbk sum	light off	light on	light on
Motor overload	light on	light off	light off
DC link OVT	light on	light off	light on
PVT lost	light on	light on	light off
Power lost	light on	light on	light on

Parameter Table.

Function Number	Name	Setting Range	Default Value
(Monitor paramato			
0	Software version		
1	Frequency out Hz	0~50.00	*
2	Motor speed RPM		*
3	Rotor position	0~359.9	*
4	Dictated V mm/s		*
5	Output voltage V	0~900V	*
6	Mtr trp PU	1.0-> rated torque	*
7	Output current A	0~999.9A	*
8	Run count(10000)		*
9	Run count(1)		*
10	DC link V	9999v	*
11	Encoder position	0~65536	*
12	UVW position	00	*
13	Door position	00000	*
14	INPUT1		*
15	INPUT2		*
16	AD OFFSET(V)		*
17	AD OFFSET(W)		*
18	Stop		*

Function Number	Name	Setting Range	Default Value			
F0 3311 (Field Adji	F0 3311 (Field Adjust)					
F0-0	Obstruction REM	0: disabled	invalid			
		1: enabled				
F0-1	Rotate dir 1/0	0,1	SW1			
F0-2	RUN command	0~7	4			
	source					
F0-3	DR Half range mm	0~65535				
F0-4	Open low dis mm	0~100	5			
F0-5	Open unlock mm/s	5~150mm/s	60			
F0-6	Open unlock mm	0~300mm	50			
F0-7	Open Accel mm/s2	10~2048mm/s/s	1000			
F0-8	Open Jerk0 mm/s3	10~2048mm/s/s/s	1000			
F0-9	Open Decel mm/s2	10~2048mm/s/s	800			
F0-10	Open Jerk0 mm/s3	10~2048mm/s/s/s	800			
F0-11	Close Arrival mm/s	5~100mm/s	20			
F0-12	close low dis mm	5~100	55			
F0-13	Close Accel mm/s2	10~2048mm/s/s	800			
F0-14	Close Jerk0 mm/s3	10~2048mm/s/s/s	800			
F0-15	Close Decel mm/s2	10~2048mm/s/s	600			
F0-16	Close Jerk1 mm/s3	10~2048mm/s/s/s	600			
F0-17	Close unlock mm/s	5~150mm/s	35			
F0-18	Close unlock S%	0~30.0%	0			

Function Number	Name	Setting Range	Default Value
		relay vibration resistance	
F0-19	Password	0~9999	8888/4321
F1 (3312) Regulato	r		
F1-0	1() SpdP1 gain	0~10000	400
F1-1	1() ISpdI1 gain	0~10000	300
F1-2	2() SpdP2 gain	0~10000	400
F1-3	2() ISpdI2 gain	0~10000	300
F1-4	PISGP tran21 thr%	0~100	5
F1-5	PISGP tran21	0~100	5
	band%		
F1-6	Sfbk filter	0~66	33
F1-7	Prop filter	0~3	0
F1-8	Coupler Speed	0~200	50
F1-9	Coupler Speed	0:VF	2
		1:Asynchronous motor closed loop	
		2:Synchronous motor	
F1-10	Feedback mode	0: DO/DC	1
		1: ST	
F1-11	Curp gain	0~9999	512
F1-12	Curi gain	0~9999	150
F1-13	OP DRV Limit PU	0.00~2.50	2.50
F1-14	OP REG Limit PU	0.00~2.50	1.50

Function Number	Name	Setting Range	Default Value
F1-15	CL DRV Limit PU	0.00~2.50	2.50
F1-16	CL REG Limit PU	0.00~2.50	1.50
F1-17	Mtr ovl I fac PU	0.1~2.0	1.2
F1-18	PVT	0~10	0
	PVT threshld min	0: disable	
		The larger the value is, the lower	
		the sensitivity is.	
F2 (3313) Motor Para	ameters	·	
F2-0	Rated power(W)	0.1~999.9 W	43.5/94.3
F2-1	Number of poles	2~100	016
F2-2	Rated RPM	1~9999	0180
F2-3	Rated frq	1.00Hz~99.99Hz	24.00
F2-4	Rated voltage	0~999V	100/125
F2-5	Rated I(A)	0.1~999.9	000.8/1.0
F2-6	Sheave_diam mm	10~10000mm	00045
F2-7	gear_ratio	1.0~100.0	001.0
F2-8	Rope ratio	1~6	1
F2-9	Rotor pos offset	0~65535	
F2-10	resist s	0.000~9.999	7.730/2.790
F2-11	induct s(mH)	0.0~999.9mH	357.0/252.4
F2-12	resist rotor	0.000~9.999	5.230/1.820
F2-13	induct r(mH)	0.0~999.9mH	357.0/252.4

Function Number	Name	Setting Range	Default Value
F2-14	mutual induct	0.0~999.9mH	325.0/240.6
F2-15	No-load current	0.0~999.9A	001.0/2.7
F3(3314)Drive Scal	ing Parameters		
F3-0	Drive size	0~100	000
F3-1	Drv Rtd Volt(V)	0~1000	0220
F3-2	Drv Rtd I RMS(A)	0.0~999.9	002.5
F3-3	Drv I fscale(A)	0.000~4.000	1.6
F3-4	Bus fscale(V)	0.000~4.000	1.050
F3-5	Drv I limit(A)	0.0~999.9	005.0
F3-6	Bus ovt (PU)	0.00~2.00	1.6
F3-7	DC link UV(PU)	0.00~1.00	0.60
F3-8	Line fscale (V)	0.00~2.00	1.00
F3-9	M1 pick V(PU)	0.00~1.00	0.35
		1.00:1000V	
F3-10	Drv Deadtime us	2~20	03
F3-11	PWMDrv PWM	0.00~2.00	1.00
	copm PU		
F3-12	Drv k mod(PU)	0~100	100
F3-13	Switch frq (PU)	2~10 KHz	10
F3-14	Run time hour	0~65535Hshould be saved with power	*
		down	
F3-15	Running time	0~59MINshould be saved with power	*

Function Number	Name	Setting Range	Default Value
	second	down	
F4 (3315) (Enhance	ed Parameters)		
F4-0	Run hole time s	0~99.9s	00.0
		0:	
		keep continuous operation stop when the time is up	
F4-1	Power on V mm/s	10~100mm/s	0100
F4-2	Learn V mm/s	10~100mm/s	0100
F4-3	Close arrival(ms)	200~3000ms	1400
F4-4	Open arrival(ms)	500~3000ms	800
		Hold torque after arrival	
F4-5	Arr sw select	0:with open arrival and close arrival	1
		1:without open arrival but close arrival	
		2:without open arrival or close arrival	
F4-6	Open Hold torq%	0~200.0%	100.0%
F4-7	Close Hold torq%	0~200.0%	
F4-8	Baffle time ms	0~999ms	200
		0:No function	
F4-9	Baffle torq Hi%	0~200.0%	180.0%
		Baffle torque during acceleration	
F4-10	Baffle torq Mid%	0~200.0%ACC=0Retarding torque	160.0%
		for when ACC = 0	
F4-11	Baffle torq Low%	0~200.0%Baffle torque during	150.0%
		deceleration	

Function Number	Name	Setting Range	Default Value
F4-12	RY1 RY1 function	0:open arrival signal (switch or pulse) 1:close arrival signal (switch or	0
F4-13	RY2 RY2 function	 1:close arrival signal (switch or pulse) 2:fault output 3:baffle detection output 4:open door output 5:close door output 6:limited open arrival signal 7:1SDelay 1S output after close limit 8:0.5SDelay 0.5S output after close limit 9:Direct output while close limit 	7
F4-14	Power on mode	0~2	2
F4-15	Open limit mm	0~1000mm	10
F4-16	pen Speed mm/s	0~1000mm/s	0508
F4-17	Open Arrival speed	5~50mm/s	020
F4-18	Door coople 0~3	0:Asynchronous door cutter1: Synchronous door cutter3: Synchronous door cutter	3
F4-19	Close limit mm	0~1000mm	5
F4-20	Close Speed mm/s	0~1000mm/s	508

Function Number	Name	Setting Range	Default Value
F4-21	Ropen dece mm/s2	500~9999mm/s/s	5000
F4-22	Ropen Jerk mm/s3	500~9999mm/s/s/s	5000
F4-23	Demo open hold s	0~999.9s	003.0
F4-24	Demo clos hold s	0~999.9s	003.0
F4-25	Man accel mm/s2	10~2048mm/s2	0300
F4-26	Man decal mm/s2	10~2048mm/s2	0500
F4-27	Man speed mm/s	0~999mm/s	0050
F4-28	Master or Slave	0:Master status. Reopening door is	0
		possible	
		1:Slave status. Reopening door is	
		impossible	
F4-29	Empty	0	00000
F5 (3316) (VF)			
F5-0	AD OFFSETmode	0~2	0
F5-1	Torque boost	0~2.5PU	1.50
F5-2	Close 33% torq	0~100s	35
F5-3	AD (W) AD OFFSET	0~999	1860
	W		
F5-4	AD (V) AD OFFSET	0~999	1860
	V		
F5-5	Force open delay	0~9999ms	800
F5-6	Force open EN	0: DISABLE	1

Function Number	Name	Setting Range	Default Value
		1: ENABLE	
F5-7	ErrorReset time	1000~9000ms	5000
F5-8	DCLPoweron DCL	0~9000ms	0
	dly		
F5-9	Reset torq time	0~3000ms	500

Viewing faults

Use the operator to view the fault code (F6). Common fault related information is shown in

Table 4 (Common Fault Codes):

	Corresponding fault name	Possible fault causes	Solution measures
			1, Inverter fault
		1,IPM module heating	2,Door operator power isolation, to
		2, power interference	determine whether it is caused by
1	BASE FAULT	3, door operator	interference
		instantaneous current is too	3, Check the motor current parameters,
		large	if it cannot be self-recovery, inverter or
			motor is faulty
		1, The encoder circuit of	1, Replace inverter
10	PVT lost	the inverter is abnormal	2, Check the encoder connection line
		2, Encoder connection line	3, Encoder fault

Table 4

		broken or short circuited	
		3, Encoder signal	
		abnormal	
		1, Obstruction during door	
		opening and closing, door	1, Check if there are any foreign objects
_	MOTOR	operator overload	or mechanical blockages, or if the door
5	OVERLOAD	2, During the operation of	panel itself is too heavy
		the door operator, the	2, Check the motor power line
		motor is out of phase	
		1, input voltage too high	
_	DOL: LOUT	2,Short circuiting of any	1, Check the input supply voltage
7	DC link OVT	phase to ground in the three	2,Check the motor power cable
		phases of the motor	
	DOWEDLOCT		1,ACheck that the input power should be
8	POWER LOST	Input power is low	at AC220V±20%

Spare parts list

Table 5

Component			Spare	
drawing	Name	key	(quantity	Remark
number			per unit)	
VTAADIEADT	Arc tooth synchronous		1	
XTA4215ABT	belt		1	

XTA3052ABM	Tensioning component		1	Vulnerable parts
XTA4522ACQ	Motor		1	
XTA4386ABA001	Plug	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array}$	3	
XTA3386AEY	Synchronize door cam		2	
ХТА270ЗААҮ	Plug assembly of fast hanging plate		1	
XTA3117AJQ001	Hanging plate roller		4	
XTA3117AJP	Adjusting roller of hanging plate		4	
XTA3138DXG002	stop block		4	
XTA3446ADE	inverter		1	

Door operator installation instructions

1 Definition of related parameters

OP----net opening width

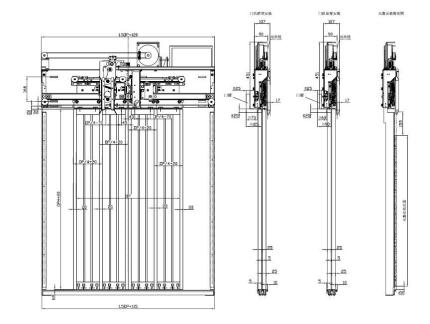
OPH--net opening height

E-----Car door sill width

L1----The installation space of the door operator refers to the distance between the car door

sill line and the installation surface of the door operator bracket. The parameter values related to

the door operator.


Table

Туре	E	L1
Center open two panel	70	90

2 Check the general drawing of the door operator to determine the relevant installation

dimensions

- 1、 door operator installation height
- 2、door panel height
- 3、door cam installation position

3 Fix the mounting bracket to the car

Take out the mounting bracket and its fasteners, and fix the mounting bracket on the C-groove on the car roof according to the actual installation method of the door operator.

a、Car roof installation

 \bigcirc Fix the car roof installation bracket on the C-groove of the car roof

⁽²⁾Adjust the horizontal spacing of the car roof mounting brackets and arrange them symmetrically with the center of the door.

⁽³⁾Adjust the distance between the mounting surface of the bracket and the front edge of the sill line of the car door so that the L1 value shown in the diagram meets the requirements (refer to Table 1), and tighten the bolts.



Figure 2 Car roof installation diagram

4 Install the door operator on the mounting bracket

Connect the door operator to the mounting bracket and pre-tighten the nuts on the mounting bracket.

 \odot Adjust the height and levelness of door operator , and the distance between the bottom

surface of the hanging plate and the surface of the sill. Adjust the verticality of the door operator and the horizontality of the door guide rail to a deviation of ≤ 0.5 mm/600mm. Level deviation between door operator guide rail and car sill ≤ 1 mm/1000mm

⁽³⁾Adjust the center of the door operator so that the center of the door operator coincides with the center of the door.

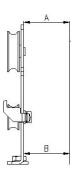
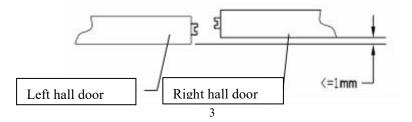
Tighten the nuts for installing the door operator.

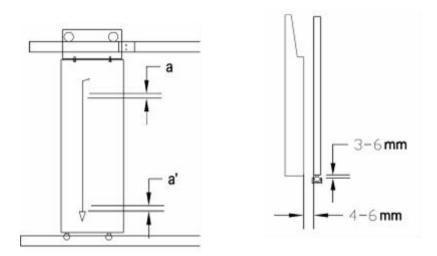
5 Hang the door panel onto the door operator

 \bigcirc Install the door slider in the plastic packaging onto the car door panel.

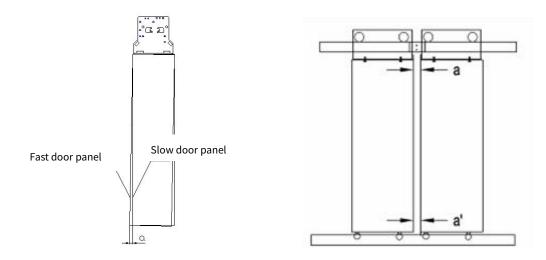
 ${}^{\textcircled{}}$ Attach the car door panel to the hanging panel and tighten the bolts

(3)Adjust the verticality of the hanging plate. If the hanging plate is tilted, insert shims at the connection between the hanging plate and the door panel. The requirement for the verticality of the hanging plate is a deviation of ≤ 0.5 mm, as shown in Figure 3.


Figure 3.

 \bigcirc Adjust the distance between the caster wheel and guide rail , the requirement is that the caster wheel is tight with the guide rail, and the caster wheel is obviously rotated when the hanging plate is running

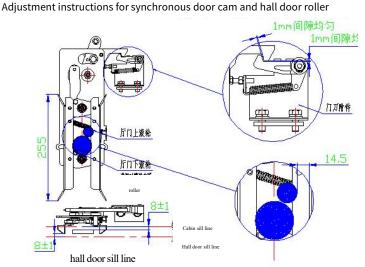

 \bigcirc Adjust the levelness of the two fast door panels to ≤ 0.5 mm , as shown in Figures 4.

⁽⁶⁾Adjust the verticality of the door panels and the running clearance of the door panels, and the deviation of the verticality of each door panel is ≤ 1 mm/1000mm, see Figure 13. Adjust the verticality of the narrow side of the slow door panel of the car door, and the deviation of the verticality between the lower end of the door panel and the car wall is required to be ≤ 1 mm. Adjust the running gap between door panels and between door panels and car walls to 4~6mm. Adjust the gap between the door panel and the sill to 3~6mm, see Figure 5.

 \bigcirc Adjust the verticality of the narrow side of the slow door panel of the car door, and the deviation of the verticality between the lower end of the door panel and the car wall is required to be \leq 1mm. Adjust the running gap between door panels and between door panels and car walls to 4~6mm. Adjust the gap between the door panel and the sill to 3~6mm, see Figure 7.

^(a) After operator power up,keep the door in place, observe that narrow side verticality of right door panel, if deviation are same

(9) that the narrow side verticality of right door panel \leq 0.5mm. keep the door in place, the deviation between right and left fast door panel are not reach the needs, then should counting to adjust to ensure it is satisfactory.


 $\cancel{10}$ Adjust the levelness of the sill to ≤ 1.5 mm/1000 mm

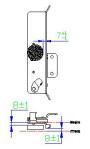
 Ω Adjust the parallelism deviation between the door panel and the sill groove. The parallelism deviation is ≤ 0.5 mm. Push the door panel gently along the door opening and closing direction with your hand. After the force is removed, the door panel can be reset without jamming. Ensure that the hall door can be closed normally.

6 Install the door cam onto the door operator

6.1 Installation of synchronous door cam

Install the synchronous door cam on the door panel hanging board by tightening the bolts, as shown in figure 8

Note:


1. The adjustment position of the hall door lock roller: make the lower roller on the center line of the two door cam blades or the distance between the upper roller and the door closing side blade 14.5 \pm 1. (If the roller adjustment is too biased, it can cause the door cam to open during the door closing process, or it cannot open after the door is closed in place, resulting in the door operator running dead.)

2. The adjustment position of the door knife lock hook and the accessory lock hook: the gap is both 1.

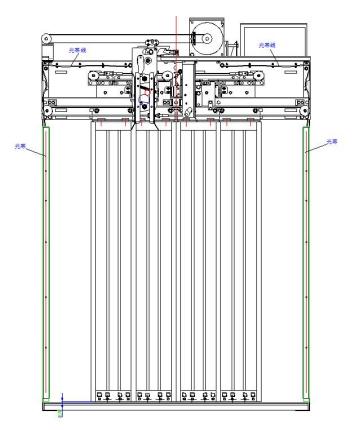
3. If the size is too large, the natural gap between the car doors after closing is too large or cannot be locked firmly, which can easily cause the door lock to break and the elevator to return to the base station; The size is too small, which may cause the blade to fail to operate tightly when opening the door, or there may be abnormal noise.

7 Install anti pick device on the door operator

a.Installation of anti pick device

Instructions for adjusting the anti pick device and rubber wheel

1. Hall door rubber wheel adjustment position: make the distance between the rubber wheel and the anti pick device blade 7 $\,\pm\,$ 1


(If the adjustment distance between the rubber wheel and the anti pick blade is too large, it will cause the door opening process to be unable to open, and the door operator will crash during operation)

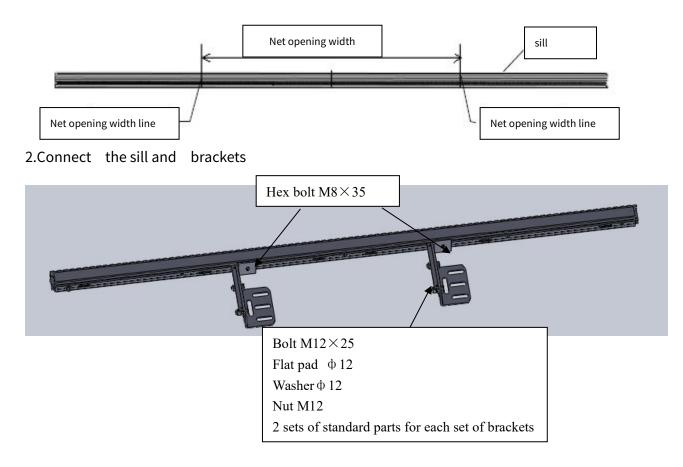
8 Door protection wiring

a、 Door protection wiring

When installing a light curtain, follow Figure 7 for the wiring of the light curtain, and tie the

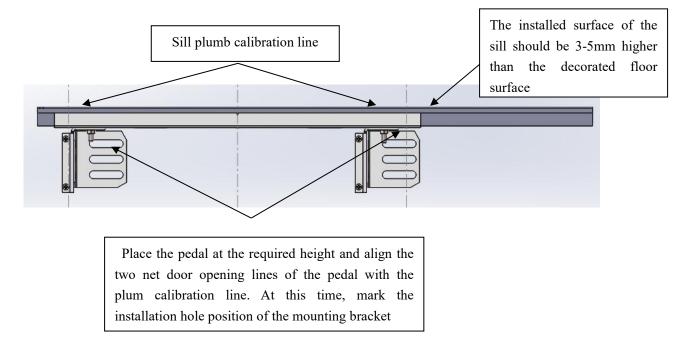
cable tightly on the car door with a pull-down strap.

b、 Light curtain installation requirements

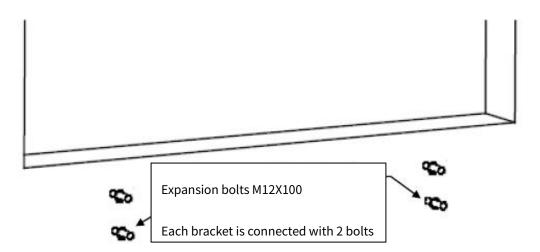

1.The lower end face of the light curtain should be flush with the lower end face of the fixed bracket, and the distance from the lower end face of the light curtain fixed bracket to the lower end face of the car door panel should be greater than 10mm; All assembly holes of the light curtain should be fixed to the door leaf.

2.The light curtain wire is tied tightly along the reinforcing ribs of the door panel with an inverted tie and connected to the car roof light curtain junction box.

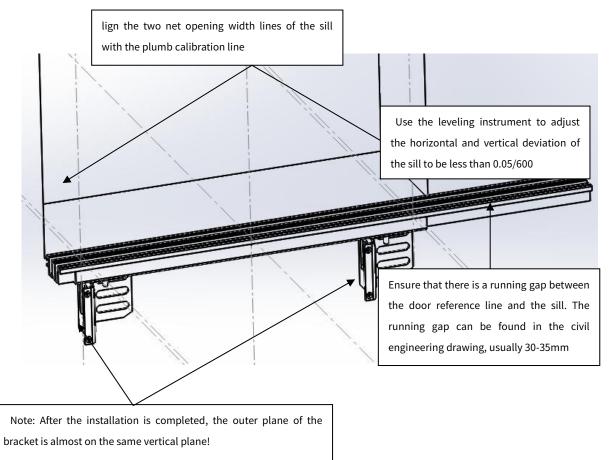
3.After the installation of the light curtain, it must be grounded, and the grounding wire should be connected to the car door with screws and connected back to the car roof grounding wire.

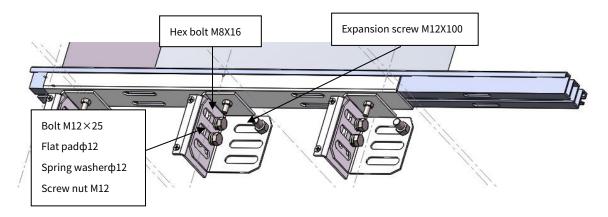

Installation instructions for sill

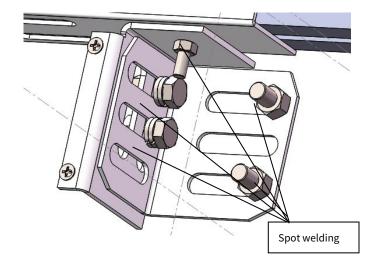
1.Draw the net opening width line and net opening center line on the sill

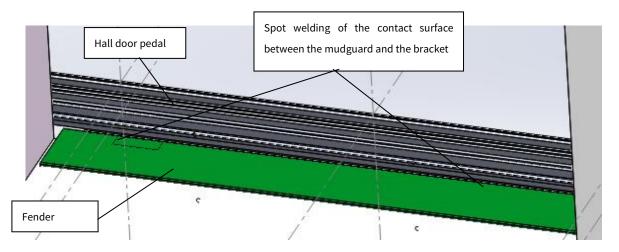


3.Determine the position of the mounting holes for the brackets at both ends and make a


mark at this position. As shown in the following figure


4.Remove the sill and brackets at both ends, drill holes on the marks with an impact drill, and install expansion bolts. As shown in the following figure


5. Fix the brackets at both ends and make adjustments


6、Install the middle bracket

7、After adjustment, lock all bolts tightly and weld the adjustable components with electric welding (as shown in the figure below). The welded areas should be repainted with paint.

8、Fender installation

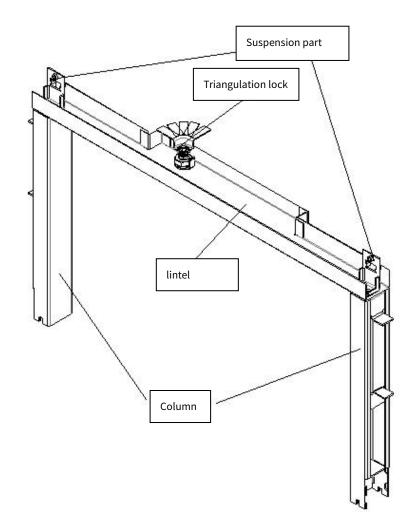
Installation instructions for hall door jamb

1. Assemble Jamb components at the entrance of the hall.

Pay attention to jamb assembly:

a.After the jamb is assembled, the inner width of the jamb must be consistent with the net

door width, and the deviation should be within 2mm;

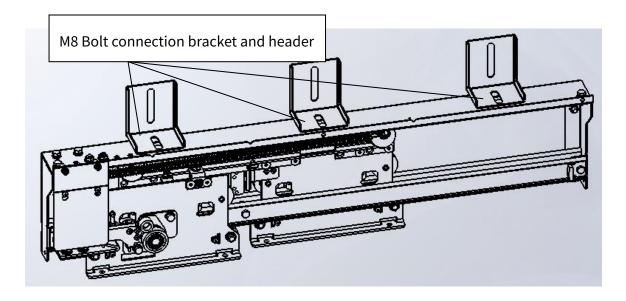

b.The connecting surface of the jamb's lintel and the column shall be kept on the same plane,

and the steps shall not be greater than 0.5mm;

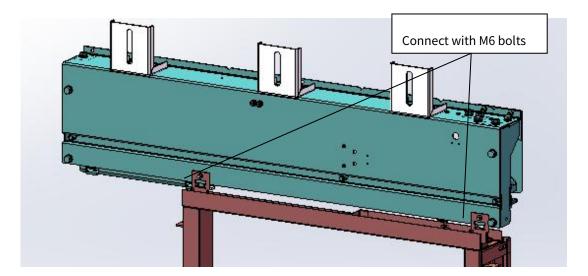
c.The jamb should be perpendicular to the lintel.

d.The unlocking method of the side open two panel home elevator door system is door lintel

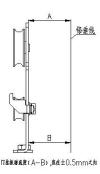
unlocking, and the triangular lock should be installed in advance when assembling the jamb.



2. Installed the assembled small jamb on the sill component as shown in the figure below. The installation verticality deviation of the small jamb should be smaller than 1/1000. It needs two people to cooperate to complete the installation, with one person holding jamb and the other person installing and adjusting.

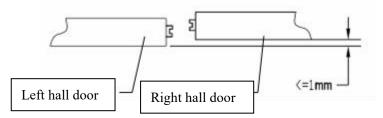


Installation instructions for hall door header


1、Connect the header mounting bracket to the header

2、Preset the header and connect the header to the jamb header bracket.

3. Determine the position of the header installation bracket, align the net opening scale lines on both ends of the header with the door sample line, and then install expansion bolts to secure the header. Adjust the levelness and verticality deviation of the header to \leq 0.5mm/600mm, adjust the front and rear positions of the header according to the hall door


reference line, and weld and reinforce after adjustment.

4. Installation and adjustment of hanging panels and door panels

 \odot Connect the hall door board to the hanging panels and tighten the bolts.

 \bigcirc Adjust the verticality of the hanging plate. If the hanging plate is tilted, insert shims at the connection between the hanging plate and the door panel. The requirement for the verticality of the hanging plate is a deviation of ≤ 0.5 mm as shown in the figure 11.

(3) Adjust the distance between the caster wheel and guide rail, the requirement is that the caster wheel is tight with the guide rail, and the caster wheel is obviously rotated when the hanging plate is running.

(4) Adjust the verticality of the door panels and the running clearance of the door panels, and the deviation of the verticality of each door panel is ≤ 1 mm/1000mm, see Figure 13. Adjust the verticality of the narrow side of the slow door panel of the car door, and the deviation of the verticality between the lower end of the door panel and the car wall is required to be ≤ 1 mm. Adjust the running gap between door panels and between door panels and car walls to 4~6mm. Adjust the gap between the door panel and the sill to 3~6mm, see Figure 13.

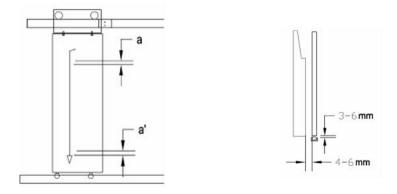


Figure 13

 \bigcirc When the door is in place, ensure that the door panel is flush with the column, and the vertical deviation of the upper and lower sides is ≤ 2 mm

G Adjust the parallelism deviation between the door panel and the sill groove. The parallelism deviation is ≤0.5mm. Push the door panel gently along the door opening and closing direction with your hand. After the force is removed, the door panel can be reset without jamming.
 Ensure that the hall door can be closed normally.

Maintenance

1 Door operator regular maintenance and maintenance items

In order to ensure the reliable operation of the door operator, it is necessary to regularly

maintain and maintain the door operator. Please refer to the table below for details.

No	ltem	Content
1	Door guide shoe	Adjustment of gap between door guide shoe and sill groove and observation of wear degree
2	Adjusting roller below hanging plate	Adjust the distance between the caster wheel and guide rail, and observation of wear degree
3	Hanging roller	Observation of hanging roller running status
4	Guide	Clean the surface of the guide rail, add grease and replace it, and observe the degree of wear
5	Timing belt	Observation and adjustment of tension
6	Wire rope	Observation and adjustment of steel wire rope status, degree of tension, and degree of compression of steel wire rope pressure plate
7	Contact switch	Observe whether the contact switch contacts well and adjust the relative position
8	Cable drag chain	Observe the status and ensure the fixation is secure
9	Cable	Observe if the cable is damaged

Table 7

Standard for replacing vulnerable parts of products			
No	Name	Replace standard	
1	Contac switch	Plastic casing cracked, spring contacts blackened	
2	Door guide shoe	The door guide shoe is severely worn and the door panel is shaking during operation	
3	Adjusting roller below hanging plate	The adjustment wheel does not rotate smoothly or is severely worn	
4	Hanging plate roller	Significant wear of polyurethane, shaking of wheels, and abnormal noise during rotation	
5	Timing belt	Severe wear or obvious cracks	
6	Timing belt wheel	The timing belt wheel does not rotate smoothly, there is obvious abnormal noise, and axial shaking	
8	Wire rope	Hairing and breakage	

Table 8

3 Product scrapping standards

1.Severe plastic deformation of mechanical components of the door operator caused by transportation, installation, or abnormal faults.

2.After long-term use, the mechanical components of the door operator are worn, twisted, and deformed, making it impossible to complete normal door opening and closing or making loud noise. After replacing relevant vulnerable parts, they still cannot meet the requirements.

3.The controller and motor exceed the product life cycle and cannot be replaced with spare parts after a malfunction occurs.